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Abstract

This paper focuses on the problem of finding the optimal distribution of a thermal insulator
around a pipe. We consider the framework of one fluid inside a pipe of thin width which is
surrounded by a thermal insulator. We use an asymptotic model to avoid dealing with the
thin layer, leading to non-standard transmission conditions which involve discontinuities at the
interface and second order tangential derivatives. We thus consider the shape optimization
problem that aims to minimize the heat flux outside an insulator with a given volume. Then
we characterize the shape derivative of the objective functional and perform 3D numerical
simulations using the level set evolution method.
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1 Introduction and setting of the problem

1.1 Motivations
In our daily lives, reducing heat loss is of great importance from an ecological perspective.

Indeed this problem appears in various contexts and applications such as hot water pipes, buildings,
or electric kettles, for example. A typical question involves optimizing the thermal insulation
around a pipe containing hot water, subject to a volume constraint on the insulator. Insulation
problems have been studied for a long time. Here are a few recent advances (see, e.g., [8, 9]). In
particular, in [8], two thermal insulation problems were addressed by parametrizing the insulating
material by means of the tangential and normal coordinates on the boundary of the hot body (not
a fluid) and minimizing with respect to the variable thickness: it was shown that under certain
conditions, when the hot body is inside a ball, then the optimal insulator is a ball. Regarding the
numerics, in [28], different configurations were compared and a heuristic was proposed to optimize a
polygon satisfying certain geometrical constraints, providing insights into how the insulator should
be configured.

In this work, we aim to provide practical numerical solutions of the optimal insulator problem.
We therefore first perform a theoretical sensitivity analysis of the problem of insulating a pipe
containing a hot fluid and then implement a descent method -here the null-space algorithm [21]-
using the level set framework (see, e.g., [4]).
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In many practical applications, the thickness of the pipe is very small compared to its length
and also small compared to the insulator thickness (see Figure 1, where the red part corresponds
to the pipe thickness). For obvious computational reasons, one would preferably avoid to mesh it.

Figure 1: The thermal insulation of a pipe (photo by Sönke Kraft aka Arnulf zu Linden on com-
mons.wikimedia.org).

One possibility would be to ignore it. In this work, we propose to take it into account by means
of an interface condition written on the edge of the domain occupied by the fluid, obtained by an
asymptotic model of order one with respect to the small parameter (i.e. the ratio between this
thickness and the length of the pipe). The novelties of this work are: first, the model takes into
account the motion of the fluid and thus a convection term appears in the heat equation in the
fluid zone; second, the pipe is considered through an interface term rather than with the usual
model of insulation (see [8, 9, 28]).

We emphasise that the fluid and the convection in the domain Ω1 model the physics of the prob-
lem but that Ω1 will not be optimised. In particular it is important to note that the transmission
conditions that we will impose on the boundary of Ω1 will thus be imposed on a fixed boundary,
which will not be subject to shape optimisation. Indeed only the boundary of the insulating phase
is optimized, which lies “far” from these complicated feature. This non-trivial difficulty will be the
subject of further work.

1.2 The physical context
As previously mentioned, we consider in this work a given pipe, with a known geometry. The

thickness of the wall of the pipe is very small compared to the length of the pipe. Moreover, we
assume that this pipe is surrounded by an insulator.

More precisely, the problem can be stated as follows. Let ϵ > 0. Let Ω be an open bounded
connected domain of Rd, (d = 2, 3), divided into three open bounded subdomains Ωϵ

1,Ω
ϵ
m,Ω

ϵ
2,

where Ωϵ
m has constant thickness ϵ and separates Ωϵ

1 from Ωϵ
2 (see Figure 2). The subset Ωϵ

1 is
the part physically occupied by the fluid, Ωϵ

m corresponds to the wall of the pipe, and finally Ωϵ
2
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corresponds to the insulating material we will be looking to place to reduce heat loss. The interfaces
between the domains are denoted by Γϵ

i := ∂Ωϵ
i ∩∂Ωϵ

m, i = 1, 2, and we also assume that Γϵ
1∩Γϵ

2 =
∅. We define Γϵ := Γϵ

1 ∪ Γϵ
2. Throughout this article, we denote by n the outer unit normal

to ∂Ω. Moreover, particular attention should be paid to the normal used on Γϵ
1 and Γϵ

2, where
we have chosen to orient the normal exterior to Ωϵ

1 and interior to Ωϵ
2, respectively, i.e., we define

n = nϵ
1 = −nϵ

m on Γϵ
1 and n = −nϵ

2 = nϵ
m on Γϵ

2 (where, for i = 1, 2,m, nϵ
i denote the exterior

unit normal to Ωϵ
i).

As the pipe may have a complex geometry, the flow of the heat transfer fluid is described
by the stationary incompressible Navier-Stokes equations (rather than the Stokes equations). We
precise that we consider here the steady state case and we denote by uϵ the velocity of the fluid
and pϵ the pressure. Let ν, ρ > 0 be the kinematic viscosity and the material density, respectively.
The boundary of the fluid region Ωϵ

1 is assumed to be composed of three disjoint regions: ∂Ωϵ
1 =:

Γϵ
D ∪Γϵ

1 ∪Γϵ
N, where Γϵ

D is the input of the fluid with a given velocity (non homogeneous Dirichlet
boundary condition) and where the full traction vector is prescribed on Γϵ

N. The classical no-slip
condition uϵ = 0 is imposed on Γϵ

1. To summarize, the motion of the fluid is described by the
following equations: 

−ν∆uϵ + (∇uϵ)uϵ +
1

ρ
∇pϵ = 0 in Ωϵ

1,

div(uϵ) = 0 in Ωϵ
1,

uϵ = uD on Γϵ
D,

σ(uϵ, pϵ)n = 0 on Γϵ
N,

uϵ = 0 on Γϵ
1,

(1.1)

where uD is a given inlet velocity, and where σ(u, p) is the fluid stress tensor defined by

σ(u, p) := 2νε(u)− p

ρ
I,

with ε(u) := 1
2 (∇u+∇ut) the symmetric gradient and I the identity matrix, and where the

superscript t denotes the transpose matrix.

Remark 1.1. In practice, we work with the unit pressure head p̄ =
p

ρ
.

Concerning the temperature, we consider the stationary heat equation in the whole domain Ωϵ

with a Fourier-Robin condition on the outer boundary of the insulating material stating that the
heat flux there is proportional to the gap of temperatures between the considered domain and the
outer medium with a given rate α > 0. Notice that the temperature field inside the pipe Ωϵ

1 is
determined in terms of the velocity uϵ through a convection–diffusion equation. It is convenient
to decompose the temperature field into

Tϵ = Tϵ
11Ωϵ

1
+ Tϵ

m1Ωϵ
m
+ Tϵ

21Ωϵ
2
,

where Tϵ is the solution of the stationary convection-diffusion equation in Ωϵ and where Tϵ
i is its

restriction to Ωϵ
i , for i = 1, 2,m. Here 1 denotes the indicator function of a domain. The physical

parameters are the given thermal diffusivities κ1, κ2, κm that are assumed to be positive numbers.
The boundary of Ωϵ

2 is the disjoint union ∂Ωϵ
2 =: Γϵ

2 ∪ Γϵ
R∪Γϵ

e and the boundary of Ωϵ
m is given

by ∂Ωϵ
m =: Γϵ ∪ Γϵ

m,N. Figures 2 and 3a illustrate the geometry of our problem. On the Dirichlet
part Γϵ

D, a given temperature is imposed, and the previously mentioned Fourier-Robin condition
is imposed on Γϵ

R. Moreover, we impose Neumann boundary conditions on Γϵ
m,N∪Γϵ

N∪Γϵ
e. Finally,
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Figure 2: Configuration of our 3D thermal insulation problem in Ω divided by Ωϵ
1,Ω

ϵ
m and Ωϵ

2.

classical transmission conditions are assumed on Γϵ and we obtain the following system:

−div(κ1∇Tϵ
1) + uϵ · ∇Tϵ

1 = 0 in Ωϵ
1,

−div(κm∇Tϵ
m) = 0 in Ωϵ

m,

−div(κ2∇Tϵ
2) = 0 in Ωϵ

2,

Tϵ
1 = TD on Γϵ

D,

κ1
∂Tϵ

1

∂n
= 0 on Γϵ

N,

κm
∂Tϵ

m

∂n
= 0 on Γϵ

m,N,

κ2
∂Tϵ

2

∂n
= 0 on Γϵ

e,

κ2
∂Tϵ

2

∂n
+ αTϵ

2 = αText on Γϵ
R,

Tϵ
1 = Tϵ

m on Γϵ
1,

Tϵ
2 = Tϵ

m on Γϵ
2,

κ1
∂Tϵ

1

∂n
= κm

∂Tϵ
m

∂n
on Γϵ

1,

κ2
∂Tϵ

2

∂n
= κm

∂Tϵ
m

∂n
on Γϵ

2,

(1.2)

where TD is a given input temperature and Text is the given exterior temperature.

1.3 Setting of the approximate and of the shape optimization problems
As exposed above, the actual configuration involves three disjoint regions: the fluid, the wall

of the pipe, and the insulator. However, the wall thickness is very small compared to the other
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dimensions, and keeping this wall in a numerical model requires the use of very refined and therefore
very expensive meshes, especially in dimension three, to compute the temperature field.

The approximate domains. We therefore propose, in a classical way since the work of Enquist
and Nedelec [18], to forget this zone in the geometrical description of the problem, but to take into
account its impact on the thermal properties through artificial transmission conditions at the new
fluid-insulator interface. We thus obtain, at the cost of a systematic model error, an approximate
solution whose calculation is much less costly since it only requires a much coarser mesh (adapted
to the internal diameter of the pipe and no longer to the wall thickness). Our idea is to use this
inexpensive approximate model to optimize the shape of the insulation around the pipe. Figure 3
illustrates this geometric approximation.

Ωϵ
2Ωϵ

mΩϵ
1

Γ

(a) The real domain Ωϵ.

Ω2Ω1

Γ

(b) The approximate domain.

Figure 3: Approximation of the domain from three to two layers (cross-section view)

Thus, in the following, we only consider a two layer domain by doing ϵ → 0: one occupied by
the fluid (denoted by Ω1) and one by the insulator (denoted by Ω2), separated by the interface
Γ := ∂Ω1 ∩ ∂Ω2 that we assume to have non-zero measure in Rd−1 and to be C1 (see Figure 3b).
Roughly speaking, Ωi is the limit of Ωϵ

i when ϵ→ 0, i = 1, 2, Ωϵ
m disappears and Γ coincides with

the mid-surface between Γϵ
1 and Γϵ

2. We then define Ω := Ω1 ∪Ω2. In a similar way to above, ∂Ω1

and ∂Ω2 are respectively decomposed as ∂Ω1 =: ΓD ∪ Γ ∪ ΓN and ∂Ω2 =: Γ ∪ ΓR∪Γe. Moreover,
we assume that Γ ∩ ΓD ̸= ∅ and Γ ∩ ΓN ̸= ∅. Finally, we assume in the following that the normals
to ΓN and ΓD, nΓN

and nΓD
, are unit tangent vectors to Γ on ∂Γ ∩ ∂ΓN and ∂Γ ∩ ∂ΓD. Figure 4

illustrates our configuration.

The approximate equations. We can now specify the boundary values problems that we will
consider in the following. Concerning the fluid, the system is similar since the equations are not
affected by this reduction of the domain. Hence, we consider

−ν∆u+ (∇u)u+
1

ρ
∇p = 0 in Ω1,

div(u) = 0 in Ω1,
u = uD on ΓD,

σ(u, p)n = 0 on ΓN,
u = 0 on Γ,

(1.3)

where uD ∈ H
1/2
00 (ΓD)

d := {v|ΓD
,v ∈ H1(Ω1)

d,v|∂Ω1\ΓD
= 0} is the given inlet velocity. It is well-

known that theses stationary incompressible Navier-Stokes equations are well-posed if ν is large
enough (see, e.g., [7]), which we will assume in the remainder of this work: then it admits a unique
solution (u, p) ∈ H1(Ω1)

d × L2(Ω1).
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Figure 4: Configuration of the 3D thermal insulation problem in Ω divided by Ω1 and Ω2.

Remark 1.2. As previously mentioned, the shape Ω1 will not be subject to shape optimization
and is therefore fixed. It is then important to note that, in practise, it is solved once and for all
throughout the optimization process.

As far as the thermal equations are concerned, the omission of the wall of the pipe has a
significant impact on the equations. We use the approach introduced in [18] based on now classic
asymptotical techniques. This approach and technical implementation are explained in detail and
pedagogically in Vial’s thesis [29]. We also mention the work [14] dealing with generalized boundary
conditions for an interface problem. As previously, we use the following decomposition:

T = T11Ω1 + T21Ω2 , κ = κ11Ω1 + κ21Ω2 .

Then doing similar computations to what we have done in [12], when ϵ is sufficiently small, the
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following approximate problem of order one is obtained:

−div(κ1∇T1) + u · ∇T1 = 0 in Ω1,

−div(κ2∇T2) = 0 in Ω2,

T1 = TD on ΓD,

κ1
∂T1

∂n
= 0 on ΓN,

κ2
∂T2

∂n
= 0 on Γe,

κ2
∂T2

∂n
+ αT2 = αText on ΓR,〈
κ
∂T

∂n

〉
= −κmϵ−1 [T] on Γ,[

κ
∂T

∂n

]
= ϵdivτ (κm∇τ ⟨T⟩)− κmH[T] on Γ,

κi
∂Ti

∂n
= 0 on ∂Γ, i = 1, 2,

(1.4)

where TD ∈ H1/2(ΓD) is the given exterior temperature, and where u solves the Navier-Stokes
system (1.3). In the previous equations, divτ and ∇τ are, respectively, the tangential divergence
and gradient operator, and H is the mean curvature of Γ. Since the jumps are not zero, we need
to choose an orientation for the normal: let n the outer unit normal at Γ oriented towards Ω2, this
is n := n1 = −n2 at Γ, where ni is the exterior normal to Ωi. The jump and mean across the
interface Γ are defined, for a function ϕ, as

[ϕ] := ϕ1 − ϕ2 and ⟨ϕ⟩ := 1

2
(ϕ1 + ϕ2) .

The well-posedness of this system is proved below (see Theorem 2.2). Roughly speaking, this
asymptotic model takes into account the physics in the volume Ωϵ

m through the transmission con-
ditions on Γ in which appears the tangential (surface) Laplacian ∆τ = divτ (gradτ ), also known as
the Laplace-Beltrami operator. These transmission conditions are generally referred to as Ventcel
conditions.

Remark 1.3. We emphasize here that the condition on ∂Γ come from the asymptotic expansion
taking into account the homogeneous Neumann condition imposed on Γϵ

m,N in (1.2) and the zero
jumps imposed on Γϵ

i for i = 1, 2. Indeed κi
∂Tϵ

i

∂n = 0 on ∂Γϵ
i since Tϵ

i = Tϵ
m on Γϵ

i and κm
∂Tϵ

m

∂n = 0
on Γϵ

m,N.

Remark 1.4. It should be pointed out that the solution T of the approximate problem obviously
depends on the parameter ϵ. It is then necessary to justify that the model error committed by
using T instead of Tϵ is of order ϵ2 in H1 norm. This is a little technical, as the two functions are
not defined on the same functional space: Tϵ ∈ H1(Ω), while T belongs to a broken Sobolev space
and then, since it is discontinuous, it does not belong to H1 globally in Ω (it simply belongs to H1

in each subdomain Ωi, i = 1, 2). Nevertheless, it is a classic result. That is not the point of our
work, so we refer the reader to [14] for an example where a similar result is demonstrated and just
comment on it. Obviously, the systematic error committed by approximating Tϵ by T is weaker
than that committed by setting ϵ = 0 in (1.4), that is a classical two-phase continuous problem.

Strictly speaking, this dependence of the solution of the approximate problem on the small pa-
rameter ϵ should be explicitly mentioned. As this would make the notations much heavier, we chose
to simply denote T the solution of the previous approximated problem.
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The shape optimization problem. We can now set out the main question that we are going to
study in this work: given a pipe with a known fixed geometry and a given quantity of insulation, how
should the insulation be positioned to minimize heat loss to the outside world, whose temperature is
known? In other words, the domain Ω1 being fixed, we are looking for a domain Ω2 of prescribed
volume so that the heat flux across the interface with the outside, i.e. ΓR, is as small as possible.
We therefore define the criterion J by

J(Ω2) :=

∫
ΓR

(
κ2
∂T2

∂n

)2

ds =

∫
ΓR

α2(T2 − Text)
2 ds, (1.5)

where the temperature T solves the approximate convection-diffusion problem (1.4).
We thus consider the following shape optimization problem: given a prescribed volume V0 > 0,

minimize J under the constraint

G(Ω2) = 0, where G(Ω2) :=

∫
Ω2

dx− V0.

The fundamental questions of the existence of optimal domains and their regularity have been
studied in the work of Bucur et al. [9] in a simplified setting (no pipe wall and no fluid circulation
just a heated body). The study of these questions is not the topic of the present work. We will here
focus on the numerical computation of such a solution, and to this end prove the differentiability
of the shape functionals at stake and compute the shape derivatives in this framework.

Remark 1.5. We can notice that the real heat loss is the functional

Q(Ω2) :=

∫
ΓR

−κ2
∂T2

∂n
ds =

∫
ΓR

α(T2 − Text) ds,

but we prefer the square version in order to have positive values.

2 Main results
In this section, we state the main results of our work. All the proofs are detailed in the following

section.

2.1 Functional spaces and well posedness of the approximate problem (1.4)
We consider the following affine spaces associated to the non-homogeneous Dirichlet boundary

data uD ∈ H
1/2
00 (ΓD)

d and TD ∈ H1/2(ΓD):

VuD
(Ω1) := {w ∈ H1(Ω1)

d; w = uD on ΓD,w = 0 on Γ},
HTD

(Ω1,Ω2) := {S = (S1,S2) ∈ H1(Ω1,Ω2); S1 = TD on ΓD},

where,
Hk(Ω1,Ω2) := {S = (S1,S2) ∈ H1(Ω1)×H1(Ω2); ⟨S⟩ ∈ H1(Γ)}, k = 1, 2.

The spaces V0(Ω1) and H0(Ω1,Ω2) are Hilbert spaces when they are equipped with the respective
norms:

∥w∥V0(Ω1) := ∥w∥H1(Ω1)d and ∥S∥H0(Ω1,Ω2) :=

(
2∑

i=1

∥∇Si∥2L2(Ωi)d
+ ∥∇τ ⟨S⟩ ∥2L2(Γ)d + ∥[S]∥2L2(Γ)

)1/2

.
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Then the incompressible Navier-Stokes equations (1.3) have the following variational formula-
tion 

Find (u, p) ∈ VuD(Ω1)× L2(Ω1) such that, for all (w, r) ∈ V0(Ω1)× L2(Ω1),∫
Ω1

(
2νε(u) : ε(w) + (∇u)u ·w − p

ρ
div(w)− r

ρ
div(u)

)
dx = 0.

(2.1)

As previously mentioned, we assume that the viscosity ν is large enough so that the problem (1.3)
is well-posed: it has a unique weak solution (u, p) ∈ VuD(Ω1)× L2(Ω1). For the remainder of this
work, we assume that the velocity of the fluid at the outlet, i.e. at the boundary ΓN, actually
causes it to exit: there is no recirculation at the outlet. This assumption on the velocity is written
as

u · n ≥ 0 on ΓN. (2.2)

For the temperature, the corresponding variational formulation of the approximate problem (1.4)
is given by

Find T ∈ HTD
(Ω1,Ω2) such that, for all S ∈ H0(Ω1,Ω2), a(T,S) = l(S), (2.3)

where the bilinear and linear forms are respectively

a(T,S) :=

2∑
i=1

∫
Ωi

κi∇Ti · ∇Si dx+

∫
Ω1

S1u · ∇T1 dx+

∫
ΓR

αT2S2 ds

+

∫
Γ

κm

(
ϵ∇τ ⟨T⟩ · ∇τ ⟨S⟩+H[T] ⟨S⟩+ 1

ϵ
[T][S]

)
ds,

l(S) :=

∫
ΓR

αTextS2 dx.

Remark 2.1. Here we highlight an important point in obtaining the previous variational formula-
tion. Let T be the strong solution of (1.4) that we suppose H2(Ω1,Ω2) and S ∈ H0(Ω1,Ω2). Using
Green’s formula on the boundary Γ (see, e.g., [27, Proposition 2.58]), we obtain∫

Γ

−divτ (∇τ ⟨T⟩) ⟨S⟩ ds =
∫
Γ

∇τ ⟨T⟩ · ⟨S⟩ ds−
∫
∂Γ

⟨S⟩∇τ ⟨T⟩ · τ dl,

where τ is the unit tangent vector to Γ, normal to ∂Γ and dl is the (d − 2) dimensional measure
along ∂Γ. In our situation, τ corresponds to the normal to ΓD on Γ ∩ ΓD and the normal to ΓN

on Γ ∩ ΓN. Then the second term of the right hand-side of the previous formula vanishes since

∇τ ⟨T⟩ · τ =
∂ ⟨T⟩
∂n

=

〈
∂T

∂n

〉
and since

∂Ti

∂n
= 0 on ∂Γ, i = 1, 2 (which comes from the boundary

conditions on ∂Γ given in (1.4))

Then the following result (proved in Section 3) claims that this problem is well-posed.

Theorem 2.2 (Well-posedness of the state equation for temperature). Assume that the exit con-
dition (2.2) holds. There exists a positive real number ϵ0 such that, if 0 < ϵ < ϵ0, then the
convection-diffusion problem (2.3) has a unique solution T ∈ HTD(Ω1,Ω2).
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2.2 Shape sensitivity analysis
Now we aim to perform a shape sensitivity analysis and compute the shape derivative of the

objective functional J given in (1.5). To do this, we rely on the Hadamard shape derivative
(see [27, 23] among many). We suppose Ω2 to be smooth enough (at least C2). The main idea is
to perturb the domain Ω2 (in particular, the free boundary ΓR) using a vector deformation field
θ ∈ C1,∞(Rd)d := C1 ∩W1,∞(Rd)d with ∥θ∥W1,∞(Rd)d < 1, this is,

Ωθ
2 := (I + θ)Ω2.

We consider the following space of admissible deformations,

Θad := {θ ∈ C1,∞(Rd)d; ∥θ∥W1,∞(Rd)d < 1, θ = 0 in Ω1}.

We first recall the definition of the notion of shape derivative of a shape functional in our context.

Definition 2.3. The shape derivative of a function J(Ω2) is defined as the Fréchet derivative at 0
of the map θ ∈ Θad 7→ J(Ωθ

2) ∈ R. It is denoted by J ′(Ω2) and it is then given by

J(Ωθ
2) = J(Ω2) + ⟨J ′(Ω2),θ⟩+ o(θ), with lim

θ→0

o(θ)

∥θ∥W1,∞(Ω)d
= 0.

In the following, we introduce Tθ ∈ HTD(Ω1,Ω
θ
2) the perturbed solution, i.e. the solution of

approximate convection-diffusion Problem (1.4) defined on Ω1 ∪ Ωθ
2 instead of Ω1 ∪ Ω2.

Proposition 2.4 (Existence and characterization of the shape derivative). If Text ∈ H2(Rd),
then there exists an extension T̃θ ∈ H1(Rd) × H1(Rd) of Tθ such that the mapping θ 7→ T̃θ from
Θad into L2(Rd) × L2(Rd) is C1 at 0 and the derivative, denoted T′, is called shape derivative
of T. In addition, for θ ∈ Θad and assuming that T2 belongs to H2(Ω2), the shape derivative
T′ ∈ H0(Ω1,Ω2) is characterized by,

Find T′ ∈ H0(Ω1,Ω2), such that ∀ϕ ∈ H0(Ω1,Ω2),
2∑

i=1

∫
Ωi

κi∇T′
i · ∇ϕi dx+

∫
Ω1

∇T′
1 · uϕ1 dx+

∫
ΓR

αT′
2ϕ2 ds

+

∫
Γ

κm

(
ϵ∇τ ⟨T′⟩ · ∇τ ⟨ϕ⟩+H[T′] ⟨ϕ⟩+ 1

ϵ
[T′][ϕ]

)
ds

=

∫
Ω2

κ2
(
(∇θ +∇θt div(θ)I)∇T2 −∇(θ · ∇T2)

)
· ∇ϕ2 dx

−
∫
ΓR

α (divτ (θ)(T2 − Text) + θ · ∇(T2 − Text))ϕ2 ds.

(2.4)
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Furthermore, its strong form is given by,

−κ1∆T′
1 +∇T′

1 · u = 0 in Ω1,

−κ2∆T′
2 = 0 in Ω2,

T′
1 = 0 on ΓD,

κ1
∂T′

1

∂n
= 0 on ΓN,

κ2
∂T′

2

∂n
= 0 on Γe,

κ2
∂T′

2

∂n
+ αT′

2 = divτ ((θ · n)κ2∇τT2)− α(θ · n)
(
∂

∂n
(T2 − Text) +H(T2 − Text)

)
on ΓR,〈

κ
∂T′

∂n

〉
= −κm

ϵ
[T′] on Γ,[

κ
∂T′

∂n

]
= ϵκm∆τ ⟨T′⟩ − κmH[T′] on Γ,

κi
∂T′

i

∂n
= 0 on ∂Γ, i = 1, 2.

(2.5)

Finally we can state the result of shape differentiability concerning the objective functional.

Proposition 2.5 (Shape derivative of the functional). If Text ∈ H2(Rd), then the heat insulation
functional J is shape differentiable in the direction θ ∈ Θad is given by

J ′(Ω2)(θ) =

∫
ΓR

divτ (θ)
(
α2(T2 − Text)

2 − α(T2 − Text)R2

)
ds

−
∫
ΓR

(
2α2(T2 − Text) + αR2

)
(∇Text · θ) ds

+

∫
Ω2

κ2
(
(∇θ +∇θt − div(θ)I

)
∇T2 · ∇R2 dx, (2.6)

where T = (T1,T2) ∈ HTD(Ω1,Ω2) is the solution of the convection-diffusion equation (1.4) and
R = (R1,R2) ∈ H0(Ω1,Ω2) is the solution of the following adjoint equation

−div(κ1∇R1 + R1u) = 0 in Ω1,

−div(κ2∇R2) = 0 in Ω2,

R1 = 0 on ΓD,

κ1
∂R1

∂n
+ R1u · n = 0 on ΓN,

κ2
∂R2

∂n
= 0 on Γe,

κ2
∂R2

∂n
+ αR2 = 2α2(T2 − Text) on ΓR,〈
κ
∂R

∂n

〉
= −κmϵ−1 [R]− κmH ⟨R⟩ on Γ,[

κ
∂R

∂n

]
= ϵdivτ (κm∇τ ⟨R⟩) on Γ,

κi
∂Ri

∂n
= 0 on ∂Γ, i = 1, 2.

(2.7)
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If furthermore T2,R2 ∈ H2(Ω2), then the shape derivative can be expressed on its surface form as

J ′(Ω2)(θ) =

∫
ΓR

f(T2,R2)(θ · n) ds, (2.8)

with

f(T2,R2) = α2(T2 − Text)
2

(
H − 4α

κ2

)
+ α(T2 − Text)R2

(
2α

κ2
−H

)
− κ2∇T2 · ∇R2

+
∂Text

∂n

(
αR2 − 2α2(T2 − Text)

)
.

Remark 2.6. The adjoint equation (2.7) is well-posed by virtue of the Lax-Milgram theorem.
The proof is similar to the proof of Theorem 2.2: the coercivity of the associated bilinear form is
analogous to the coercivity of a(·, ·). It just remains to show the continuity of the associated linear
form, which is direct.

2.3 Shape sensitivity analysis with random exterior temperature
Notice that previously, we have assumed to know the exterior parameter Text precisely. We

want now to consider the more realistic case of an imprecise knowledge of this parameter and we
then aim to take into account uncertainties about this data Text. To do that we will assume that
we have information about the uncertainties.

Let (Ξ,A,P) be a complete probability space. We consider the case where the exterior temper-
ature Text(·, ·) is given as a random process in the Bochner space L2(Ξ,H1/2(ΓR)). For any ω ∈ Ξ,
the solution (T1,T2) of the convection-diffusion problem (1.4) depends on Text(·, ω) and then
becomes a random process defined as the unique solution in HTD

(Ω1,Ω2) to the following system

− div(κ1∇T1(·, ω)) + u · ∇T1(·, ω) = 0 in Ω1,
−div(κ2∇T2(·, ω)) = 0 in Ω2,

T1(·, ω) = TD on ΓD,

κ1
∂T1(·, ω)
∂n

= 0 on ΓN,

κ2
∂T2(·, ω)
∂n

= 0 on Γe,

κ2
∂T2(·, ω)
∂n

+ αT2(·, ω) = αText(·, ω) on ΓR,〈
κ
∂T(·, ω)
∂n

〉
= −κmϵ−1 [T(·, ω)] on Γ,[

κ
∂T(·, ω)
∂n

]
= ϵdivτ (κm∇τ ⟨T(·, ω)⟩)− κmH[T(·, ω)] on Γ,

κi
∂Ti(·, ω)
∂n

= 0 on ∂Γ, i = 1, 2.

(2.9)
Since in this part we are interested in the study of the effect of a random exterior temperature,

we will make explicit the dependence on Text by means of the notation:

J(Ω2,Text) =

∫
ΓR

α2(T2 − Text)
2 ds.

The objective is now to minimize E[J(Ω2,Text(x, ·))] the expectation of the objective func-
tional J . The functional of interest J is quadratic in a temperature that depends linearly on the
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random parameter. This situation fits in the context of the work of Dambrine et al. [15]. Note
that considering higher order moments can been done by a mere adaptation of the methods (see
[16]). The gradient of E[J(Ω2,Text(x, ·))] can be computed thanks to the two-point correlation of
the random input Text. In order to avoid the needed introduction of tensor calculus for the general
case (see [15] for the quadratic case and [13] for the general polynomial case), we restrict ourselves
in this work to the particular case where Text is a finite sum

Text(x, ω) = T0
ext(x) +

m∑
k=1

ξk(ω)T
k
ext(x), x ∈ Ω, ω ∈ Ξ, (2.10)

where, for each k = 1, . . . ,m, Tk ∈ H0(Ω1,Ω2) solves Equation (1.4) with exterior temperature Tk
ext

on ΓR and 0 as Dirichlet boundary condition on ΓD, and where T0 ∈ HTD
(Ω1,Ω2) solves Equa-

tion (1.4) with exterior temperature T0
ext on ΓR and TD as Dirichlet boundary condition on ΓD. The

random variables ξk are assumed independent following centered Gaussian distributions with vari-
ance σ2

k. This case can be easily treated, but remains representative of the general situation when
the number m of terms goes to ∞. The expression (2.10) is a so-called truncated Karhunen-Loève
decomposition (see, e.g., [15, 3] about this expansion and its use in reliability-based optimization).

Theorem 2.7 (Shape derivative of the expectation of J). Let us consider an uncertain exterior
temperature expanded as in (2.10). Let us also assume that the random variables ξk have zero
expected value and are independent. Then the expectation of J can be computed as

E[J(Ω2,Text)] = J(Ω2,T
0
ext) +

m∑
k=1

σ2
kJ(Ω2,T

k
ext) (2.11)

and, under regularity assumptions similar to those of Proposition 2.5, its shape derivative is then
given by

(E[J ])′ (Ω2,Text)(θ) = J ′(Ω2,T
0
ext)(θ) +

m∑
k=1

σ2
kJ

′(Ω2,T
k
ext)(θ). (2.12)

3 Proofs

3.1 Proof of the well-posedness theorem 2.2
Proof of Theorem 2.2. We follow the usual strategy: lift the boundary condition and apply Lax-
Milgram theorem in the space H0(Ω1,Ω2). The crucial point is to prove that a is coercive. The
presence of an interface condition on Γ makes it not completely customary. We therefore demon-
strate this point.

Let S ∈ H0(Ω1,Ω2). We split a(S,S) into a1(S,S) + a2(S,S) + a3(S,S) where

a1(S,S) :=

2∑
i=1

∫
Ωi

κi|∇Si|2 dx+

∫
Γ

κm

(
ϵ|∇τ ⟨S⟩ |2 +

1

ϵ
[S]2
)

ds+

∫
ΓR

αS22 ds,

a2(S,S) :=

∫
Ω1

S1(u · ∇S1) dx,

a3(S,S) :=

∫
Γ

κmH[S] ⟨S⟩ ds.

The bilinear form a1 clearly is coercive,

a1(S,S) ≥
2∑

i=1

∥κ1/2i ∇Si∥2L2(Ωi)d
+ ϵκm∥∇τ ⟨S⟩ ∥2L2(Γ) +

κm
ϵ
∥[S]∥2L2(Γ).
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Concerning a2, we get after integration by parts

a2(S,S) =

∫
Ω1

u · ∇
(
S2

2

)
dx =

1

2

∫
ΓN

S22u · n ds.

We have used the boundary conditions u = 0 on Γ and S1 = 0 on ΓD and the incompressiblility
of the fluid div(u) = 0 in Ω1. Now since the output normal velocity u ·n is nonnegative on ΓN by
the exit condition (2.2), we get a2(S,S) ≥ 0. The difficulty lies in the product [S] ⟨S⟩ that has no
definite sign. Using successively Cauchy-Schwarz then Young inequalities, one gets∣∣∣∣∫

Γ

H[S] ⟨S⟩ ds
∣∣∣∣ =

1

2

∣∣∣∣∫
Γ

[S] (H S1 + H S2) ds

∣∣∣∣
≤ 1

2
∥[S]∥2L2(Γ)

(
∥HS1∥2L2(Γ) + ∥HS2∥2L2(Γ)

)
≤ 1

2

(
1

2ϵ
∥[S]∥2L2(Γ) +

ϵ

2
∥HS1∥2L2(Γ) +

1

2ϵ
∥[S]∥2L2(Γ) +

ϵ

2
∥HS2∥2L2(Γ)

)
≤ 1

2ϵ
∥[S]∥2L2(Γ) +

ϵ∥H∥2∞
4

(
∥S1∥2L2(Γ) + ∥S2∥2L2(Γ)

)
.

Since S1 = 0 on ΓD, one infers from the trace theorem and Poincaré inequality for S1, the existence
of a positive constant C > 0, such that, ∥S1∥2L2(Γ) ≤ C∥∇S1∥2L2(Ω1)d

. This is not the case for S2.
Using the definition of the jump, one gets

∥S2∥L2(Γ) ≤ ∥S1∥L2(Γ) + ∥[S]∥L2(Γ) then ∥S2∥2L2(Γ) ≤ 2
(
∥S1∥2L2(Γ) + ∥[S]∥2L2(Γ)

)
by the triangle inequality. Finally, we have obtained the bound∣∣∣∣∫

Γ

H[S] ⟨S⟩ ds
∣∣∣∣ ≤ 1

2

(
1

ϵ
+ ϵ∥H∥2∞

)
∥[S]∥2L2(Γ) +

3ϵC∥H∥2∞
4

∥∇S1∥2L2(Ω1)d
.

Therefore,

a1(S,S) + a3(S,S) ≥
2∑

i=1

∥κ1/2i ∇Si∥2L2(Ωi)d
− ϵ

3Cκm∥H∥2∞
4

∥∇S1∥2L2(Ω1)d
+ ϵκm∥∇τ ⟨S⟩ ∥2L2(Γ)d

+
κm

2

(
1

ϵ
− ϵ∥H∥2∞

)
∥[S]∥2L2(Γ).

We impose ϵ < ∥H∥−1
∞ so that the last term is nonnegative. The second term is absorbed by the

correspond term in a1 if we impose that

κ1 − ϵ
3Cκm∥H∥2∞

4
≥

1

2
κ1 ⇔ ϵ ≤ 2κ1

3Cκm∥H∥2∞
.

In conclusion, a is coercive if

ϵ < ϵ0 := min
(

1

∥H∥∞
,

2κ1
3Cκm∥H∥2∞

)
,

which concludes the proof.
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3.2 Shape sensitivity analysis
Before proving the main result of this part (Proposition 2.5), we need some auxiliary results,

such as the existence of the derivative. As it is classical in shape optimization, the first step is to
show the existence of the material derivative and then compute it (see, e.g., [23]). For the sake of
simplicity, we assume without loss of generality that TD = 0.

We recall that, for θ ∈ Θad, Tθ ∈ HTD(Ω1,Ω
θ)
2 is the solution of the convection-diffusion

Problem (1.4) defined on Ω1 ∪Ωθ
2 instead of Ω1 ∪Ω2. Throughout this section, u ∈ VuD

(Ω1) is the
velocity solution of the incompressible Navier-Stokes equations (1.3), which does not depend on θ,
since Ω1 is fixed.

Proposition 3.1 (Existence and characterization of the material derivative of T). For all θ ∈ Θad,
we define Tθ := Tθ ◦ (I + θ) ∈ HTD(Ω1,Ω2). If Text ∈ H2(Rd), then

θ ∈ Θad 7→ Tθ ∈ HTD
(Ω1,Ω2)

is differentiable in a neighborhood of 0. Furthermore, its derivative at 0, in the direction θ, is called
the material derivative of T ∈ HTD

(Ω1,Ω2), is denoted by Ṫ ∈ H0(Ω1,Ω2), and is the solution of
the following variational problem

Find Ṫ ∈ H0(Ω1,Ω2) such that, for all ϕ ∈ H0(Ω1,Ω2),
2∑

i=1

∫
Ωi

κi∇Ṫi · ∇ϕi dx+

∫
Ω1

∇Ṫ1 · uϕ1 dx+

∫
ΓR

αṪ2ϕ2 ds

+

∫
Γ

κm

(
ϵ∇τ

〈
Ṫ
〉
· ∇τ ⟨ϕ⟩+H[Ṫ] ⟨ϕ⟩+ 1

ϵ
[Ṫ][ϕ]

)
ds

=

∫
Ω2

κ2
(
∇θ +∇θt − div(θ)I

)
∇T2 · ∇ϕ2 dx−

∫
ΓR

α (divτ (θ)(T2 − Text)−∇Text · θ)ϕ2 ds.

(3.1)

Proof of Proposition 3.1. We proceed as described in [23]. Let ϕ ∈ H0(Ω1,Ω2) and let θ ∈ Θad.
We define ϕθ := ϕ ◦ (I + θ)−1 ∈ H0(Ω1,Ω

θ
2) and we have∫

Ωθ
2

κ2∇Tθ,2 · ∇ϕθ,2 dx+

∫
Ω1

(κ1∇Tθ,1 · ∇ϕ1 +∇Tθ,1 · uϕ1) dx+

∫
ΓR

αTθ,2ϕθ,2 ds

+

∫
Γθ

κm
(
ϵ∇τθ ⟨Tθ⟩ · ∇τθ ⟨ϕθ⟩+Hθ[Tθ] ⟨ϕθ⟩+ ϵ−1[Tθ][ϕθ]

)
ds =

∫
Γθ
R

αTextϕθ,2 ds,

where we have used that Ωθ
1 = Ω1 and u = u ◦ (I + θ), since θ = 0 in Ω1. Changing variables, we

get∫
Ω2

κ2A(θ)∇Tθ,2 · ∇ϕ2 dx+

∫
Ω1

(
κ1∇Tθ,1 · ∇ϕ1 +∇Tθ,1 · uϕ1

)
dx+

∫
ΓR

αB(θ)Tθ,2ϕ2 ds

+

∫
Γ

κm
(
ϵ∇τ

〈
Tθ

〉
· ∇τ ⟨ϕ⟩+H[Tθ] ⟨ϕ⟩+ ϵ−1[Tθ][ϕ]

)
ds =

∫
ΓR

αB(θ)Text ◦ (I + θ)ϕ2 ds, (3.2)

where

A(θ) := |det(I +∇θ)|(I +∇θ)−1(I +∇θ)−t, B(θ) := |det(I +∇θ)||(I +∇θ)−tn|Rd , (3.3)

and | · |Rd is the usual Eucledian norm in Rd. Then, we introduce F : Θad × H0(Ω1,Ω2) 7→
(H0(Ω1,Ω2))

′, defined for all S ∈ H0(Ω1,Ω2) by,
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⟨F(θ, T ), S⟩ :=
∫
Ω2

κ2A(θ)∇T 2·∇S2 dx+

∫
Ω1

(
κ1∇T 1 · ∇S1 +∇T 1 · uS1

)
dx+

∫
ΓR

αB(θ)T 2S2 ds

+

∫
Γ

κm

(
ϵ∇τ

〈
T
〉
· ∇τ ⟨S⟩+H[T ] ⟨S⟩+ 1

ϵ
[T ][S]

)
ds−

∫
ΓR

αB(θ)Text ◦ (I + θ)S2 ds.

By construction F(0,T) = 0 where T ∈ H0(Ω1,Ω2) is the solution of the approximate convection-
diffusion equation (1.4). Similarly to [23, Theorem 5.5.1], we show that F is C1. Finally, we
compute DTF(0,T) that for all S, Ŝ ∈ H0(Ω1,Ω2), which is given by

⟨DTF(0,T)S, Ŝ⟩ =
2∑

i=1

∫
Ωi

κi∇Si · ∇Ŝi dx+

∫
Ω1

∇S1 · uŜ1 dx

+

∫
ΓR

αS2Ŝ2 ds+

∫
Γ

κm

(
ϵ∇τ ⟨S⟩ · ∇τ ⟨Ŝ⟩+H[S][Ŝ] +

1

ϵ
[S][Ŝ]

)
ds.

Hence, thanks to the well-posedness Theorem 2.2 we deduce that DTF(0,T) is an isomorphism
from H0(Ω1,Ω2) into (H0(Ω1,Ω2))

′.
By virtue of the implicit function theorem, there exists a C1 function θ ∈ Θad 7→ T (θ) ∈

H0(Ω1,Ω2) in a neighborhood of 0 such that, F(θ, T (θ)) = 0. By uniqueness of the solution
Tθ ∈ H0(Ω1,Ω

θ
2) (Theorem 2.2) and from (3.2), we deduce Tθ = T (θ), then, θ ∈ Θad 7→ Tθ ∈

H0(Ω1,Ω2) is C1.
To prove that the material derivative Ṫ ∈ H0(Ω1,Ω2) satisfies (3.1), we proceed as in [1,

Proposition 6.30]. We first recall that

A′(0)(θ) = div(θ)I−∇θ − (∇θ)t, B′(0)(θ) = divτ (θ) and T
′
(0)(θ) = Ṫ.

Then, differentiating (3.2) at θ = 0, in the direction θ and using the chain rule of those derivatives,
we get (3.1).

After showing the existence and computing the material derivative, we can do the same for the
Eulerian derivative, whose proof uses the previous results and some integrations by parts.

Proof of Proposition 2.4. Let us introduce a linear continuous extension

E : H0(Ω1,Ω2) 7→ H1(Rd)×H1(Rd).

We define T̃θ := E(Tθ) ◦ (I + θ)−1 and since θ ∈ Θad 7→ Tθ ∈ H0(Ω1,Ω2) is differentiable in a
neighborhood of 0, we obtain the existence of the shape derivative by using [23, Lemma 5.3.3].

Since T2 ∈ H2(Ω2), we have by definition of the Eulerian derivative that for any θ ∈ Θad,

T′
1 = Ṫ1 ∈ H1(Ω1), T

′
2 = Ṫ2 − θ · ∇T2 ∈ H1(Ω2), ⟨T′⟩ =

〈
Ṫ
〉
∈ H1(Γ).

Using this in the problem solved by the material derivative (3.1), leads to T′ ∈ H0(Ω1,Ω2) solves
(2.4). In order to obtain the strong form of the shape derivative (2.5), we integrate by parts in
formula (2.4), this is,∫

Ω2

κ2∇T′
2 · ∇ϕ2 dx+

∫
Ω1

(κ1∇T′
1 · ∇ϕ1 + ϕ1∇T′

1 · u) dx+

∫
ΓR

αT′
2ϕ2 ds

+

∫
Γ

κm
(
ϵ∇τ ⟨T′⟩ · ∇τ ⟨ϕ⟩+H[T′] ⟨ϕ⟩+ ϵ−1[T′][ϕ]

)
ds
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=

∫
Ω2

κ2
(
(∇θ +∇θt)∇T2 − div(θ)∇T2 −∇(θ · ∇T2)

)
· ∇ϕ2 dx

−
∫
ΓR

α (divτ (θ)(T2 − Text) + θ · ∇(T2 − Text))ϕ2 ds

=

∫
Ω2

κ2
(
(∇θ − div(θ)I)∇T2 − (∇2T2)θ

)
· ∇ϕ2 dx

−
∫
ΓR

α (divτ (θ)(T2 − Text) + θ · ∇(T2 − Text))ϕ2 ds

=

∫
Ω2

(κ2 div((θ · ∇ϕ2)∇T2 − (∇T2 · ∇ϕ2)θ)− (θ · ∇ϕ2)κ2∆T2) dx

−
∫
ΓR

α (divτ (θ)(T2 − Text) + θ · ∇(T2 − Text))ϕ2 ds.

Since T ∈ HTD
(Ω1,Ω2) is the solution of the convection-diffusion equation (1.4), κ2∆T2 = 0 in Ω2

with the boundary condition κ2 ∂T2

∂n = α(Text − T2) on ΓR, then∫
Ω2

κ2∇T′
2 · ∇ϕ2 dx+

∫
Ω1

(κ1∇T′
1 · ∇ϕ1 + ϕ1∇T′

1 · u) dx+

∫
ΓR

αT′
2ϕ2 ds

+

∫
Γ

κm
(
ϵ∇τ ⟨T′⟩ · ⟨ϕ⟩+H[T′] ⟨ϕ⟩+ ϵ−1[T′][ϕ]

)
ds

=

∫
Ω2

κ2 div((θ · ∇ϕ2)∇T2 − (∇T2 · ∇ϕ2)θ) dx

−
∫
ΓR

α

(
divτ ((T2 − Text)θ) + (θ · n) ∂

∂n
(T2 − Text)

)
ϕ2 ds.

By divergence theorem and the fact that θ = 0 on Γ,∫
Ω2

κ2∇T′
2 · ∇ϕ2 dx+

∫
Ω1

(κ1∇T′
1 · ∇ϕ1 + ϕ1∇T′

1 · u) dx+

∫
ΓR

αT′
2ϕ2 ds

+

∫
Γ

κm
(
ϵ∇τ ⟨T′⟩ · ⟨ϕ⟩+H[T′] ⟨ϕ⟩+ ϵ−1[T′][ϕ]

)
ds

=

∫
ΓR

(
(θ · ∇ϕ2)κ2

∂T2

∂n
− κ2∇T2 · ∇ϕ2 − α divτ ((T2 − Text)θ)ϕ2 − α(θ · n)ϕ2

∂

∂n
(T2 − Text)

)
ds.

Decomposing the gradient as ∇ϕ = ∇τϕ+n ∂ϕ
∂n and using again that T verifies the Robin boundary

condition at ΓR, we obtain that∫
Ω2

κ2∇T′
2 · ∇ϕ2 dx+

∫
Ω1

(κ1∇T′
1 · ∇ϕ1 + ϕ1∇T′

1 · u) dx+

∫
ΓR

αT′
2ϕ2 ds

+

∫
Γ

κm
(
ϵ∇τ ⟨T′⟩ · ∇τ ⟨ϕ⟩+H[T′] ⟨ϕ⟩+ ϵ−1[T′][ϕ]

)
ds

=

∫
ΓR

(
−α divτ (ϕ2(T2 − Text)θ)− κ2∇τT2 · ∇τϕ2(θ · n)− αϕ2(θ · n) ∂

∂n
(T2 − Text)

)
ds.

Finally, integrating by parts on the surface ΓR (see [23, Proposition 5.4.9]) yields the desired
formula.

Finally, after the existence of the shape derivative of T is assured, the shape derivative derivative
can be computed by using the chain rule.
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Proof of Proposition 2.5. Differentiability. Let θ ∈ Θad. We have

J(Ωθ
2) =

∫
Γθ
R

α2(Tθ,2 − Text)
2 ds.

Changing of variables with Γθ
R = (I + θ)ΓR, we get

J(Ωθ
2) =

∫
ΓR

α2(Tθ,2 − Text ◦ (I + θ))2B(θ) ds,

where B(θ) is defined in (3.3). We recall that θ ∈ Θad 7→ B(θ) ∈ C0(ΓR) and θ ∈ Θad 7→
Text ◦ (I + θ) ∈ H1(Rd) are C1, and we have previously proved in Proposition 3.1 that θ ∈ Θad 7→
Tθ ∈ HTD(Ω1,Ω2) is differentiable in a neighborhood of 0. Therefore we deduce by chain rule that
the heat insulation J given by (1.5) is shape differentiable and its shape derivative reads:

J ′(Ω2)(θ) =

∫
ΓR

2α2(T2 − Text)(Ṫ2 −∇Text · θ) ds+
∫
ΓR

α2(T2 − Text)
2 divτ (θ) ds. (3.4)

Shape derivative computation. Taking ϕ = R ∈ H0(Ω1,Ω2) in the material derivative equation (3.1)
and testing with Ṫ ∈ H0(Ω1,Ω2) in the adjoint equation (2.7), we get respectively∫

Ω2

κ2∇Ṫ2 · ∇R2 dx+

∫
Ω1

(
κ1∇Ṫ1 · ∇R1 +∇Ṫ1 · uR1

)
dx+

∫
ΓR

αṪ2R2 ds

+

∫
Γ

κm

(
ϵ∇τ ⟨R⟩ · ∇τ

〈
Ṫ
〉
+H ⟨R⟩ [Ṫ] + 1

ϵ
[R][Ṫ]

)
ds

=

∫
Ω2

κ2
(
∇θ +∇θt − div(θ)I

)
∇T2 · ∇R2 dx

−
∫
ΓR

α (divτ (θ)(T2 − Text)R2 −∇Text · θR2) ds, (3.5)

and∫
Ω2

κ2∇Ṫ2 · ∇R2 dx+

∫
Ω1

(
κ1∇Ṫ1 · ∇R1 + R2u · ∇Ṫ2

)
dx+

∫
ΓR

αṪ2R2 ds

+

∫
Γ

κm

(
ϵ∇τ ⟨R⟩ · ∇τ

〈
Ṫ
〉
+H ⟨R⟩ [Ṫ] + 1

ϵ
[R][Ṫ]

)
ds =

∫
ΓR

2α2(T2 − Text)Ṫ2 ds. (3.6)

Using (3.5) and (3.6), we get∫
ΓR

2α2(T2 − Text)Ṫ2 ds =

∫
Ω2

κ2
(
∇θ +∇θt − div(θ)I

)
∇T2 · ∇R2 dx

−
∫
ΓR

α (divτ (θ)(T2 − Text)R2 −∇Text · θR2) ds. (3.7)

Plugging (3.7) into (3.4), this yields:

J ′(Ω2)(θ) =

∫
ΓR

(
divτ (θ)(α

2(T2 − Text)− α(T2 − Text)R2)− (2α2(T2 − Text)− αR2)∇Text · θ
)
ds

+

∫
Ω2

κ2(∇θ +∇θt − div(θ)I)∇T2 · ∇R2 dx,
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obtaining (2.6).
To prove the surface expression (2.8), since now we have more regularity, we can integrate by

parts, yielding to the terms θ · n. By chain rule,

J ′(Ω2)(θ) =

∫
ΓR

2α2(T2 − Text)T
′
2 ds+

∫
ΓR

α2

(
∂

∂n
(T2 − Text)

2 +H(T2 − Text)
2

)
(θ · n) ds.

(3.8)
Testing the Eulerian derivative equation (2.5) with R ∈ H0(Ω1,Ω2) and the adjoint equation (2.7)
with T′ ∈ H0(Ω1,Ω2), we have respectively∫

Ω2

κ2∇T′
2 · ∇R2 dx+

∫
Ω1

(κ1∇T′
1 · ∇R1 +∇T′

1 · uR1) dx+

∫
ΓR

αT′
2R2 ds

+

∫
Γ

κm

(
ϵ∇τ ⟨R⟩ · ∇τ ⟨T′⟩+H ⟨R⟩ [T′] +

1

ϵ
[R][T′]

)
ds

= −
∫
ΓR

(
κ2∇τT2 · ∇τR2 + αR2

(
∂

∂n
(T2 − Text) +H(T2 − Text)

))
(θ · n) ds (3.9)

and∫
Ω2

κ2∇T′
2 · ∇R2 dx+

∫
Ω1

(κ1∇T′
1 · ∇R1 + R1u · ∇T′

1) dx+

∫
ΓR

αT′
2R2 ds

+

∫
Γ

κm

(
ϵ∇τ ⟨R⟩ · ∇τ ⟨T′⟩+H ⟨R⟩ [T′] +

1

ϵ
[R][T′]

)
ds =

∫
ΓR

2α2(T2 − Text)T
′
2 ds. (3.10)

Using (3.9) and (3.10), we get∫
ΓR

2α2(T2 − Text)T
′
2 ds = −

∫
ΓR

(
κ2∇τT2 · ∇τR2 + αR2

(
∂

∂n
(T2 − Text) +H(T2 − Text)

))
(θ · n) ds.

(3.11)
Then, (3.8) becomes

J ′(Ω2)(θ) =

∫
ΓR

(
α2 ∂

∂n
(T2 − Text)

2 + α2H(T2 − Text)
2 − κ2∇τT2 · ∇τR2

−αR2

(
∂

∂n
(T2 − Text)−H(T2 − Text)

))
(θ · n) ds

=

∫
ΓR

(
2α2(T2 − Text)

∂T2

∂n
+ α2H(T2 − Text)

2 − αR2
∂T2

∂n
− αHR2(T2 − Text)

−κ2∇τT2 · ∇τR2 −
∂Text

∂n
(2α2(T2 − Text)− αR2)

)
(θ · n) ds.

Using the boundary conditions κ2 ∂T2

∂n = α(Text − T2) and κ2
∂R2

∂n = 2α(T2 − Text) − αR2 on ΓR

and that ∇τT2 · ∇τR2 = ∇T2 · ∇R2 − ∂T2

∂n
∂R2

∂n , we obtain (2.8).

Remark 3.2. We also expose an alternative method to compute the shape derivative of a general
functional by only using the Eulerian derivative in Appendix A.
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3.3 Shape sensitivity analysis with random exterior temperature

Proof of Proposition 2.7. Let ω ∈ Ξ be fixed. Recall that Text(x, ω) = T0
ext(x) +

m∑
k=1

ξk(ω)T
k
ext(x),

for x ∈ Ω. Then, by linearity,

T(·, ω) = T0(·) +
m∑

k=1

ξk(ω)T
k(·)

is the unique solution in HTD
(Ω1,Ω2) of (2.9) where, for each k = 1, . . . ,m, Tk ∈ H0(Ω1,Ω2)

solves Equation (1.4) with respectively Tk
ext and 0 as conditions on ΓR and ΓD, and where T0 ∈

HTD(Ω1,Ω2) solves Equation (1.4) with respectively T0
ext and TD as conditions on ΓR and ΓD.

Now we will show (2.11). Using that J is quadratic with respect to the temperature gap at the
boundary, we have

E[J ](Ω2,Text) = E[J(Ω2,T
0
ext +

m∑
k=1

ξkT
k
ext] = E

∫
ΓR

α2

(
(T0 − T0

ext +

m∑
k=1

ξk(T
k − Tk

ext)

)2


=

∫
ΓR

α2(T0 − T0
ext)

2 + 2

n∑
k=1

E[ξk]
∫
ΓR

(T0 − T0
ext)(T

k − Tk
ext)

+

n∑
k,l=1

E[ξkξl]
∫
Γ

(Tl − Tl
ext)(T

k − Tk
ext).

Since the random variables ξk are independent and centered, many terms cancel and one gets

E[J ](Ω2,Text) = J(Ω2,T
0
ext) +

∫
Ξ

m∑
k=1

ξ2kJ(Ω2,T
k
ext)P(dω) = J(Ω2,T

0
ext) +

m∑
k=1

σ2
kJ(Ω2,T

k
ext).

The expression of the shape derivative (2.12) follows as a linear combination of shape derivatives
of the form of those in Proposition 2.5.

4 Numerical methods used to solve the involved problems

4.1 Shape optimization framework
The level-set method. In the context of shape optimization, the level set evolution method
was introduced by Allaire et al. in [4]. The idea consists in considering a fixed domain D that
contains every admissible domain Ω and such that boundaries ΓD, ΓN and Γe belong to ∂D. In
practice, D is a box. This allows to describe Ω by means of a level set function ϕ : D → R as
follows 

x ∈ Ω ⇐⇒ ϕ(x) < 0

x ∈ ΓR ⇐⇒ ϕ(x) = 0

x ∈ D \ Ω ⇐⇒ ϕ(x) > 0.

In particular this allows us to track the boundary ΓR that we aim to optimize. Then, the mesh
on D is done based on the level-set ϕ, identifying ΓR by the zero level set of ϕ. After initialization,
at the step n of the shape optimization process, we compute the level set ϕn by solving the following
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equation, 
∂ϕn

∂t
+ θ · ∇ϕn = 0, 0 < t < τ, x ∈ D

ϕn(0, x) = ϕn−1(x), x ∈ D,
(4.1)

where τ > 0 is the descent step in the shape optimization algorithm and θ is an appropriate
velocity field, such that τ∥θ∥L∞(D)d is of the order of mesh size h. In our applications, we rely
on the null space algorithm (that we briefly describe below), where ∥θ∥L∞(D)d is at the mesh size
scale h, then we can simply choose τ = 1. Numerically speaking, Equation (4.1) can be computed
by advect (see [10]) and the remeshing step by mmg (see [17]). Notice that in our case, we have
two level set functions, ϕ1 and ϕ2 that describe Ω1 and Ω2, respectively. Since Ω1 is fixed, we will
just have to update ϕ2 for the remeshing.

The velocity field θ that we will use belongs to H1(D)d, such that θ = 0 on ∂D and θ = 0
in Ω1. It is obtained by solving the following extension-regularization problem,∫
D

(
h2∇θ : ∇ψ + θ · ψ

)
dx = ⟨J ′(ΓR), ψ⟩ , ∀ψ ∈

{
ψ ∈ H1(D)d; ψ = 0 on ∂D and ψ = 0 in Ω1

}
.

(4.2)
It is important to remark, that by construction, θ is a descent direction.

Null space optimization method. As constrained optimization algorithm, we rely on the null
space algorithm introduced in [21] under the implementation of Feppon [19]. This method first
decreases the violation of the constraint in order to be feasible, then minimizes the objective func-
tion. It is particularly well suited when we start from shapes that does not satisfy the constraints
and when numerous constraints are considered.

4.2 Numerical resolution with FEM
We highlight that the approximate convection-diffusion (1.4) and the adjoint equations (2.7)

can not be implemented directly due to the use of the broken Sobolev spaces such as H0(Ω1,Ω2).
Allaire et al proposed a method in [2] to approximate this kind of equations in order to use any finite
element software with spaces of continuous functions. However this method involves to duplicate
the degrees of freedom, which we do not want for our 3D simulations. Indeed, it becomes too
expensive in our context. Domain decomposition methods can be used as well, adapting [25] for
example. However, it is not clear how many iterations it can take to converge to no mismatch at
the interface, in particular in 3D geometries with a large quantity of vertices at the interface (and
we require to solve it a lot of times in the shape optimization procedure). Furthermore, the factor 1

ϵ
can lead to poor conditioning of the linear systems and then slow resolution. For all these reasons,
we solve these equations directly using the dedicated Nitsche method that we have introduced in
our previous work [11]. Its main advantages are the efficiency and the robustness with respect to
the small parameter ϵ that naive methods do not provide (see our previous work [11]) for details.

Navier-Stokes equations. Concerning the Navier-Stokes equations (1.3), they can be solved
with any finite element software. We rely on FreeFem++ (see [22]) and PETSc (see [5]) for this
purpose. Since Ω1 is fixed, the Navier-Stokes equations (1.3) have to be solved just once. However,
it is necessary to interpolate the solution in every step of the shape optimization algorithm, since
the mesh that describes Ω1 will slightly change: indeed the remeshing step mmg concerns the level
set function that describes the boundary ΓR but then naturally affects the whole mesh.
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Nitsche extended finite element method for a Ventcel transmission problem with
discontinuities at the interface For the sake of simplicity, in this part, we suppose TD = 0.
In the case of the convection-diffusion problem (2.3), we decompose the associated bilinear form
a(·, ·) into a(·, ·) = b(·, ·) + c(·, ·) where

b(T,S) :=

2∑
i=1

∫
Ωi

κi∇Ti · ∇Si dx+

∫
Ω1

S1u · ∇T1 dx

+

∫
ΓR

αT2S2 ds+

∫
Γ

κm (ϵ∇τ ⟨T⟩ · ∇τ ⟨S⟩+H[T] ⟨S⟩) ds,

c(T,S) :=

∫
Γ

κm
ϵ
[T][S] ds.

The term c(T,S) produces poor conditioning when ϵ is small, that is the case since our model comes
from an asymptotic development. To deal with this, we consider the Nitsche approach [26] that
we previously used in [11] to stabilize our matrix with respect to ϵ, improving the conditioning of
the matrix. This approach may seem tricky at first sight, so we give a few intuitions here before
introducing the method (we refer to [11] for details).

A first (naive) attempt is to add a positive real value η > 0 to the denominator of [T]/ϵ, so
that the denominator is greater than ϵ, i.e. [T]/(ϵ+ η). Of course, this is a numerical recipe which
lacks mathematical support. In particular, it does not satisfy the transmission condition〈

κ
∂T

∂n

〉
= −κm

ϵ
[T] on Γ. (4.3)

Then, the intuition is to find an adequate η. More precisely, the new discrete problem must be
such that the associated bilinear form is consistent, coercive and continuous. To guarantee consis-
tency, we weakly impose the transmission condition (4.3). For the bilinear form to be continuous
and coercive, we need to choose an appropriate penalization coefficient. We first introduce some
notations to formalize this.

Let Th be a regular simplicial mesh of Ω and let Fh be the set of faces of Th, Fh,Γ the set of
faces situated on Γ and Th,Γ the set of elements which have one face on Γ. Let hF be the diameter
of the face F ∈ Fh,Γ. We consider the polynomial spaces

P1
h := {Sh ∈ C(Ω1)× C(Ω2); Sh|K ∈ P1,∀K ∈ Th} and P1

h,0 := P1
h ∩H0(Ω1,Ω2).

Then, we define the following mesh-depending bilinear form, for any Th,Sh ∈ P1
h,0,

ah(Th,Sh) := a(Th,Sh)−
∑

F∈Fh,Γ

βF

(〈
κ
∂Th

∂n

〉
+
κm
ϵ
[Th],

〈
κ
∂Sh
∂n

〉
+
κm
ϵ
[Sh]

)
L2(F )

,

for some βF > 0 to be appropriately chosen. In our previous work [11], we enforce coercivity and
continuity, leading to

ah(Th,Sh) = a(Th,Sh)−
∑

F∈Fh,Γ

γϵhF
ϵ+ γκmhF

(〈
κ
∂Th

∂n

〉
+
κm
ϵ
[Th],

〈
κ
∂Sh
∂n

〉
+
κm
ϵ
[Sh]

)
L2(F )

.

Hence
ah(Th,Sh) = b(Th,Sh) + ch(Th,Sh),
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with

ch(Th,Sh) :=
∑

F∈Fh,Γ

∫
F

κm
ϵ+ γκmhF

[Th][Sh]−
γϵhF

ϵ+ γκmhF

〈
κ
∂Th

∂n

〉〈
κ
∂Sh
∂n

〉
− γκmhF
ϵ+ γκmhF

(〈
κ
∂Th

∂n

〉
[Sh] +

〈
κ
∂Sh
∂n

〉
[Th]

)
ds,

where γ > 0 is a stabilization parameter, that it is small enough in order to guarantee the coercivity
of ah. Let us remark, that in the decomposition of the new bilinear form ah, the bilinear form b
continues to appear; what it changes is the bilinear form ch instead of c, whose associated matrix
has a better conditioning due to the stabilization.

Remark 4.1. Note that if γ = 0, then we recover our original (discrete) formulation with a(·, ·)
as bilinear form. Moreover, if γκmhF is larger enough than ϵ, then κm

ϵ+γκmhF
≈ 1

γhF
, in which

case γ > 0 cannot be too small. This formally explains the improvement of conditioning.

Then we consider the following Nitsche problem to approximate the equation (2.3) is{
Find Th ∈ P1

h,0 such that
ah(Th,Sh) = l(Sh), ∀Sh ∈ P1

h,0,
(4.4)

that estimates the continuous solution T ∈ H0(Ω1,Ω2) of the convection-diffusion equation (1.4)
in the energy sense as it is stated in the next result (the proof is a mere adaptation of [11,
Theorem 4.6]).

Theorem 4.2 (Error estimate in energy norm). Let T ∈ HTD(Ω1,Ω2) the solution of the continu-
ous convection-diffusion equation (1.4) and Th the solution of the (discrete) Nitsche problem (4.4).
If in addition T ∈ H2(Ω1,Ω2), then for γ sufficiently small, there exists a constant C > 0 indepen-
dent of h and ϵ such that:

|||T− Th|||h ≤ Ch

( 2∑
i=1

∥κ1/2i Ti∥2H2(Ωi)
+ ∥(κmϵ)1/2 ⟨T⟩ ∥2H2(Γ) +

∑
F∈Fh,Γ

κm
γhF

∥[T]∥2H1(F )

)1/2

, (4.5)

where |||·||| :=

∥ · ∥2H0(Ω1,Ω2)
+

∑
F∈Fh,Γ

1

ϵ+ γhF
∥[·]∥2L2(F )

1/2

is a mesh-dependent norm on P1
h.

We proceed in a similar way concerning the adjoint equation (2.7). Let R,S ∈ H0(Ω1,Ω2). We
define ã(R,S) := a(S,R) the bilinear form associated to the adjoint problem (2.7) with right-hand

side l̃(S) :=
∫
ΓR

2α2(T2 − Text)S2 ds. As previously, the matrix associated to the term c(·, ·) has

poor conditioning. To stabilize it, we define

ãh(R,S) := ã(R,S)

−
∑

F∈Fh,Γ

γϵhF
ϵ+ γκmhF

(〈
κ
∂R

∂n

〉
+
κm
ϵ
[R] + κmH ⟨R⟩ ,

〈
κ
∂S

∂n

〉
+
κm
ϵ
[S] + κmH ⟨S⟩

)
L2(F )

.

Therefore, we obtain ãh(R,S) = ah(S,R)− dh(R,S), where

dh(R,S) :=
∑

F∈Fh,Γ

γϵhF
ϵ+ γκmhF

∫
F

H ⟨S⟩
(〈

κ
∂R

∂n

〉
+
κm
ϵ
[R]

)
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+H ⟨R⟩
(〈

κ
∂S

∂n

〉
+
κm
ϵ
[S]

)
+ κmH

2 ⟨R⟩ ⟨S⟩ ds.

Then the Nitsche problem considered to approximate the adjoint equation (2.7) is{
Find Rh ∈ P1

h,0 such that
ãh(Rh,Sh) = l̃(Sh), ∀Sh ∈ P1

h,0.
(4.6)

The error estimation is similar to the one given in Theorem 4.2. These equations are solved in
sequential with our in-house C++ code.

4.3 Summary: brief description of the algorithm used
To summarize the complete shape optimization procedure, we present below each step with the

associated computational code or library we use in Algorithm 1.

Algorithm 1 Level-set mesh evolution method for the heat insulation problem

Require an initial domain Ω1 ∪ Ω0
2.

Solve Navier-Stokes equations (2.1) in Ω1 (once and for all). ▷ FreeFem++
for n = 0, . . . , nmaxiter do

Current domain Ω1 ∪ Ωn
2 represented by the mesh TΩ1∪Ωn

2
⊂ TD.

Solve state equation (4.4) by Nitsche method. ▷ C++ in-house code
Solve adjoint equation (4.6) by Nitsche method. ▷ C++ in-house code
Compute the descent directions of each functional by solving (4.2). ▷ FreeFem++
Compute the deformation field θ. ▷ Null-space algorithm
Update the level-set function ϕn+1 thanks to (4.1). ▷ mshdist and advect
Remesh thanks to ϕn+1. ▷ mmg

end for

5 Numerical examples
We consider the thermal insulation problem in dimension three. We consider the inlet velocity

uD as a parabolic profile with maximum speed at the ΓD centered (0, yc, zc), equal to 1: in other
words, uD :=

(
(r2− (y− yc)2− (z− zc)2)/r2, 0, 0

)
, where r is the radius of Ω1 which is fixed to 0.1

in the simulations below. Moreover, we consider TD ≡ 40 and ϵ = 10−3 in the following examples,
and except for the last example, we consider D = [0, 1] × [0, 1] × [0, 1]. Finally, except for the
random outer temperature example of subsection 5.1.2, we take Text = 0. Let us conclude these
preliminaries by highlighting two points.

• On the Robin coefficient α. From [28], we know that for α small (with respect to κ2),
the functional decreases by removing insulation material, meanwhile for α large enough the
functional decreases by adding insulation material, which is more intuitive. From a physical
point of view, the need to remove material when α is small arises from the fact that, in
this case, the convective resistance becomes greater than the conductive resistance (see [6,
Chapter 3]). From a (formal) mathematical point of view, we can understand the extreme
cases: when α→ 0, we get κ2 ∂T2

∂n = 0 on ΓR, i.e. there is no influence from the environment
(for instance, an external fluid such as air acting on the insulator) and so there is no need
to insulate, contrary to the case where α → ∞ for which we get T2 = Text on ΓR, i.e. the
influence of the environment is very important and then more material is needed to reach
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equilibrium between the temperature on the insulator and the outside temperature. Hence
we will consider this latter case and we summarize the values of the parameters chosen in
the following Table 1.

κ1 1.5 · 10−7 m2s−1

κ2 10−7 m2s−1

κm 1.1 · 10−4 m2s−1

α 2 · 10−5 ms−1

ν 10−2 m2s−1

ρ 103 kgm−3

Table 1: Values of the parameters

• On the no recirculation at the outlet assumption (2.2). In the four following examples, we
numerically check that the hypothesis u · n ≥ 0 on ΓN is well satisfied.

All the presented simulations were performed on a personal laptop with an AMD Ryzen 9 4900hs
@3.0 GHz, with 40 GB RAM. The meshes considered vary from 300 to 500 thousand vertices and 2
to 3 million tetrahedra. Each numerical simulation took less than four days of computational time.

5.1 First example: cylinder case
The first example is the cylindric case. We consider here a fixed cylinder Ω1 of radius r = 0.1,

of axis (Ox) and with (yc, zc) = (0.5, 0.5). The target volume V0 is the difference between the
volume of a cylinder of radius 0.2 and the volume of Ω1. It will be chosen similarly in the following
examples (changing the cylinder by the respective considered pipes).

(a) Initial domain Ω. (b) Final domain Ω.

Figure 5: First example - initial and final domains in the deterministic case.

5.1.1 Deterministic case

The initial geometry is depicted on Figure 5a. The optimized design is shown in Figure 5b.
On the one hand, we observe that we do not obtain two concentric cylinders, similarly to what

happens in the case of [24]. On the other hand, as expected, the objective functional J increases
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(a) Objective function J . (b) Constraint function G.

Figure 6: First example - convergence history in the deterministic case.

(see Figure 6) until the solution satisfies the volume constraint and then it is optimized (it is
well-known and natural that if the volume is larger the insulation is better).

5.1.2 Use of a random outside temperature

We now illustrate, on the previous example, the consideration of a random exterior temperature
of the form (following the notations introduced in (2.10))

Text = T0
ext + ξ1(ω)T

1
ext(x, y, z) + ξ2(ω)T

2
ext(x, y, z),

where T0
ext = 0,T1

ext = 20x and T2
ext = 10z, the random variables ξ1, ξ2 are statistically indepen-

dent, with zero expectation and variance σ2
1 = Var(ξ1) = 0.3 and σ2

2 = Var(ξ2) = 0.7. Figure
7 summarizes the obtained result, which is very similar to the deterministic case 5. This can be
explained as the deterministic component is predominant in the formulas of Theorem 2.7 for the
chosen values of the outside temperature, for two reasons. First, since the random part is multi-
plied by the variance σ2

i < 1, i = 1, 2 and second, since the difference of the values between the
outside temperature and inlet Dirichlet temperature is larger for the deterministic case (recall that
there are three solutions of the temperature, the deterministic temperature has T0 = 40 on ΓD

and T0
ext = 0 on ΓR as data, meanwhile the random temperatures have T1 = 0 on ΓD, T1

ext = 20x
on ΓR and T2 = 0 on ΓD, T2

ext = 10z on ΓR). The convergence is depicted by Figure 8, where we
can actually see that the gap between the deterministic and random case is small with respect to
the values of J ; the insulation in the random case is slightly larger as expected since it has the
random contribution.

5.2 Second example: perpendicular tubes
In this example, Ω1 is a pipe of radius r = 0.1 with two right-angled bends. The Dirichlet and

Neumann boundaries are, respectively,

ΓD = {(0, y, z) ∈ D; (y − 0.5)2 + (z − 0.75)2 = r2},
ΓN = {(1, y, z) ∈ D; (y − 0.5)2 + (z − 0.25)2 = r2}.

The initial geometry is depicted on Figure 9a.
The optimazed design is shown in Figure 9b. In the optimazed domain, the solution satisfies

the volume constraint and also keeps better the temperature inside the pipe: this is validated
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(a) Initial domain Ω. (b) Final domain Ω.

Figure 7: First example - initial and final domains with random temperature.

(a) Objective function J . (b) Constraint function G.

Figure 8: First example - convergence history with random temperature.

in Figure 10 that shows the convergence history which illustrates that in the first 20 iterations
the algorithm tries to satisfy the constraint, decreasing the volume but increasing the objective
function J until that the constraint is satisfied, and then the objective function decreases.

5.3 Third example: tubes with angle of inclination
As a third example, we consider a slight variation to the second one, now with an angle of

inclination. In this example, the angle formed by the tube at the bottom and at the middle is
of 11

6 π. The results are similar to the previous case as depicted in Figures 11 and 12.

5.4 Fourth example: Z pipe
We conclude these numerical experiments with a Z pipe geometry as Ω1. Here we consider

D = [0, 2] × [0, 1] × [0, 1]. Figure 13 shows that as in the previous example, the material in the
zones far from the pipe is removed. The convergence history is depicted in Figure 14, where we
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(a) Initial domain Ω. (b) Final domain Ω.

Figure 9: Second example - initial and final domains.

(a) Objective function J . (b) Constraint function G.

Figure 10: Second example - convergence history.

can notice that more iterations are needed to converge (nearly sixty iterations) due to the fact that
the shape is larger (in the z axis).
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(a) Initial domain Ω. (b) Final domain Ω.

Figure 11: Third example - initial and final domains.

(a) Objective function J . (b) Constraint function G.

Figure 12: Third example - convergence history.

(a) Initial domain Ω. (b) Final domain Ω.

Figure 13: Fourth example - initial and final domains (with π/2 rotation).
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(a) Objective function J . (b) Constraint function G.

Figure 14: Fourth example - convergence history.

A Shape derivatives using a fully Lagrangian approach
In the present article, we focus on a specific objective functional J measuring the heat loss given

in (1.5). In this appendix, we give some results in order to consider another objective functional
which will imply to do some computations (the chain rule part) which can be annoying. In [20] was
developed a framework to compute the shape derivatives of general functionals for a multi-physics
problem, that only requires to compute some partial derivatives.

We keep the same notation as before (see Section 2.2) and consider a general functional J that
depends on Ω2 and on the solution T of the convection-diffusion problem (1.4). We first recall the
concept of transported functional given in the following definition.

Definition A.1. The transported functional of J is the functional J such that for all θ ∈ Θad

and all T̂ ∈ H1(Ω1,Ω2),
J (θ, T̂) := J(Ωθ

2 , T̂ ◦ (I + θ)−1),

where Ωθ
2 = (I + θ)Ω2.

We suppose that J has continuous partial derivatives at (θ, T̂) = (0,T(Ω2)). To keep notations
as simple as possible, we will omit the evaluations of the partial derivatives at (θ, T̂) = (0,T(Ω2)).
We introduce the solution R ∈ H0(Ω1,Ω2) of the following adjoint problem

Find R ∈ H0(Ω1,Ω2), such that, for all S ∈ H0(Ω1,Ω2),
2∑

i=1

∫
Ωi

κi∇Ri · ∇Si dx+

∫
Ω1

R1u · ∇S1 dx+

∫
ΓR

αR2S2 ds

+

∫
Γ

κm
(
ϵ∇τ ⟨R⟩ · ∇τ ⟨S⟩+H ⟨R⟩ [S] + ϵ−1[R][S]

)
ds =

∂J
∂T̂

(S).

(A.1)

Remark A.2. In the particular case of the insulation functional (1.5),

∂J
∂T̂

(S) =

∫
ΓR

2α2(T2 − Text)S2 ds.

Then we can give a formula to compute the shape derivative for any functional, requiring just
to compute the partial derivative ∂J

∂θ (θ).
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Proposition A.3 (Volume shape derivative). If Text ∈ H2(Rd), then J is shape differentiable and
the volume shape derivative is given by

J ′(Ω2)(θ) =
∂J
∂θ

(θ)+

∫
Ω2

κ2
(
∇θ +∇θt − div(θ)I

)
∇T2 · ∇R2 dx

−
∫
ΓR

α (divτ (θ)(T2 − Text)−∇Text · θ)R2 ds,

where T ∈ HTD
(Ω1,Ω2) solves the convection-diffusion equation (1.4) and R ∈ H0(Ω1,Ω2) solves

the adjoint equation (A.1).

Proof. Let Ṫ ∈ H0(Ω1,Ω2) the Lagrangian derivative of T ∈ HTD(Ω1,Ω2) given in (3.1). We obtain
the result by using the chain rule

J ′(Ω2)(θ) =
∂J
∂θ

(θ) +
∂J
∂T̂

(Ṫ)

and then proceeding as in the proof of Proposition 2.5.

Remark A.4. In the particular case of the insulation functional (1.5),

∂J
∂θ

(θ) =

∫
ΓR

α2
(
divτ (θ)(T2 − Text)

2 − 2(T2 − Text)(∇Text · θ)
)
ds. (A.2)

The proof is analogous to Proposition 2.4. More precisely, changing variables in Ωθ
2 = (I + θ)Ω2

and differentiating.

We can also get a surface expression, which is an integral over the free boundary, that in this
case is ΓR, and depending only on the normal component of the perturbation field. The result is
obtained by integrating by parts the previous formula and using the structure theorem (see [23,
Proposition 5.9.1, Theorem 5.9.2] or [27, Theorem 2.27]).

Proposition A.5 (Surface shape derivative). Under the same hypothesis of the previous proposi-
tion and if in addition T2,R2 ∈ H2(Ω2), then the shape derivative is given by

J ′(Ω2)(θ) =
∂J
∂θ

(θ) +

∫
ΓR

(
κ2
∂T2

∂n

∂R2

∂n
− κ2∇τT2 · ∇τR2 −Hα(T2 − Text)R2 + α

∂Text

∂n
R2

)
(θ · n) ds,

(A.3)

where
∂J
∂θ

is the part of
∂J
∂θ

that depends only on θ · n.

Remark A.6. In the particular case of the insulation functional (1.5),

∂J
∂θ

(θ) =

∫
ΓR

(
Hα2(T2 − Text)

2 − 2α2(T2 − Text)
∂Text

∂n

)
(θ · n) ds.

which is obtained integrating by parts in formula (A.2) and taking the normal component.
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